INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 26, 323-343 (1998)

COMPUTATION OF BUOYANCY-DRIVEN FLOW IN AN
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SUMMARY

A computational study is performed on two-dimensional mixed convection in an annulus between a
horizontal outer cylinder and a heated, rotating, eccentric inner cylinder. The computation has been done
using a non-orthogonal grid and a fully collocated finite volume procedure. Solutions are iterated to
convergence through a pressure correction scheme and the convection is treated by Van Leer’'s MUSCL
scheme. The numerical procedure adopted here can easily eliminate the ‘Numerical leakage’ phenomenon
of the mixed convection problem whereby strong buoyancy and centrifugal effects are encountered in the
case of a highly eccentric annulus. Numerical results have been obtained for Rayleigh number Ra ranging
from 7 x 10® to 107, Reynolds number Re from 0 to 1200 and Prandtl number Pr from 0.01 to 7. The
mixed rotation parameter ¢ ( = Ra/PrRe?) varies from oo (pure natural convection) to 0.01 with various
eccentricities &. The computational results are in good agreement with previous works which show that
the mixed convection heat transfer characteristics in the annulus are significantly affected by ¢ and ¢. The
results indicate that the mean Nusselt number Nu increases with increasing Ra or Pr but decreases with
increasing Re. In the case of a highly eccentric annulus the conduction effect becomes predominant in the
throat gap. Hence the crucial phenomenon on whereby Nu first decreases and then increases can be found
with increasing eccentricity. © 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids 26: 323-343 (1998)

KEY WORDS: mixed convection; finite volume algorithm; eccentricity; Nusselt number

1. INTRODUCTION

The problem of mixed convection flow in a rotating system has received considerable attention
recently because of its numerous applications. Such applications are encountered in seeking
improvements for crystallographic perfection in industrial processing [1,2], food processing [3],
heat removal from nuclear reactor fuel rods, double-pipe heat exchangers and underground
electric transmission cables using pressurized gas. Quite often the eccentricity results from high
angular velocity of the blade or shaft in the rotating machinery or from manufacturing
tolerance or thermal deformation in a device of nominally concentric annulus. In this case the
effect of eccentricity on the convection heat transfer in the annulus becomes inevitable.
Owing to the viscous shearing effects at the end walls, a three-dimensional analysis of mixed
convection flow is necessary when the annulus has a finite length. However, with a sufficiently
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long annulus, Desai and Vafai [4] showed that there exists a core region, over a substantial
length of the cavity, which can be approximated by a two-dimensional model. Most heat
transfer studies on two-dimensional eccentric annuli have been concerned with either pure free
convection [5,6] or pure forced convection [7,8]. Only a few researchers have addressed the
problem of laminar mixed convection in a horizontal eccentric annulus with a heated rotating
inner cylinder even though it occurs in most engineering applications. Lee [9] studied the effect
of convective fluid motion of air enclosed in an annulus between two eccentric cylinders with
a heated horizontal rotating inner cylinder. He obtained numerical results for Pr = 0.7, with Re
ranging from 0 to 1120, Ra from 10* to 10° and & from —2/3 to 2/3.

More recently, Choudhury and Karki [10] considered laminar mixed convection in a
horizontal eccentric annulus. The values of eccentricity ¢ considered were in the range from 0
to 0.6. Their numerical results showed that the eccentricity introduces additional non-unifor-
mity in the flow and temperature fields. Some studies were performed by Gardiner and
Sabersky [11] on concentric cylinders with three different Prandtl numbers, namely 2.5, 4.5 and
6.5. Experimental analysis of the thermal fields in horizontal eccentric cylindrical annuli was
undertaken by Guj et al. [12].

Most heat transfer studies on the laminar mixed convection problem have been carried out
using a staggered grid arrangement and a streamfunction—vorticity formulation, [9,13] vortic-
ity—velocity formulation [14] or primitive variable formulation [15] based on the finite
difference method. These studies indicated that in the mixed convection problem with a strong
convective influence or a highly eccentric cylindrical annulus ‘numerical leakage’ occurs around
the inner cylinder. Now a numerical procedure employing a non-orthogonal mesh which has
a fully collocated storage arrangement for all variables in a finite volume formulation is used
for studying the strong convective phenomenon in a highly eccentric annulus. This numerical
procedure can easily eliminate the chequerboard oscillation found under strong rotation in a
highly eccentric annulus.

The interaction of the buoyancy- and centrifugally driven fluid with the effect of strong
rotation (Re > 2000) produces a complex three-dimensional flow with Taylor vortices [8] in the
eccentric annulus. The present work limits the numerical studies to a range of rotational
parameters (Re < 1200) before the three-dimensional effects set in. The purpose of this study
is to find the optimal location where the minimum heat transfer occurs. The results presented
here cover a range of Rayleigh number Ra, Reynolds number Re, Prandtl number Pr and
mixed rotational parameter ¢ for various eccentricities ¢. Their effects on the fluid flow and
heat transfer characteristics are discussed. Finally, correlation equations for the mean Nusselt
number Nu are also presented.

2. MATHEMATICAL FORMULATION

2.1. Governing equations

The present paper studies the problem of laminar mixed convection flow in an annulus
between two eccentric horizontal cylinders, the inner one of which is heated and rotating. A
schematic diagram of the physical model and co-ordinate system is shown in Figure 1. The
inner cylinder is heated and rotates in the counterclockwise direction. The eccentricity e is
defined as the offset between the two cylinder centres and the eccentricity configuration is
aligned with the gravity vector. It is assumed that the flow in the annular region is steady,
incompressible, laminar without Taylor vortices (Re < 1200). The annulus has infinite length
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and the thermophysical properties of the fluid are assumed constant except for the density in
the buoyancy term in the momentum equation. Therefore the two-dimensional model and the
Boussinesq approximation are applicable.

Under the foregoing assumptions the governing equations for the conservation of mass,
momentum and energy in Cartesian co-ordinates for the problem of mixed convection in an
eccentric cylinder annulus can be written as

ou Ov
120 1
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It may be noted that even though this is a cylindrical system problem, owing to the eccentric
annulus, the outer cylinder boundary and the generation of computational grids are difficult to
describe with cylindrical co-ordinates. Moreover, the system of governing equations is solved
by the finite volume method in the current study. The advantage of this method is that it
allows one to deal with complicated geometries without considering the equations written in
cylindrical co-ordinates. Hence Cartesian co-ordinates were used here to formulate the
problem. We now introduce the dimensionless variables

X y U u v P T—-T,

X== Y==2,

- =" p=—L O=—_"°
L L Row Row pR?w? T.— T, )

where L is the characteristic length (L = R, — R;) and w is the rotational speed of the inner
cylinder. The governing equations can be written in dimensionless form as
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Figure 1. Physical model and computational grid
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where Re= RwL/v is the Reynolds number, Ra=gBL>T,/va is the Rayleigh number,
T,=1T,— T, is the maximum temperature difference and Pr = v/a is the Prandtl number.
The boundary conditions for this problem with the heated inner cylinder rotating at an
angular velocity w can be written using no-slip conditions of the velocity at the boundary,
uniform but different temperatures of the inner and outer cylinders and vanishing of the
pressure gradient on the boundary. Thus the dimensionless boundary conditions are

oP _
U= —cosf, V=sind, a—zO, ®=1 atR=1(R=R), 0<0<2nm, (10)
n
oP _
U=0, V=0, S-—0, ®=0 at R=RR(R=R,), 0<0<2m, (a1
n
where R = R/R,.

2.2. Governing parameters

The governing Equations (6)—(9) contain three independent parameters, namely Re, Ra and
Pr. The geometric parameter of eccentricity ¢ and the mixed rotation parameter ¢ are given
as

(12)

Ra

= R (13)

The current study is conducted over a range of Ra, Re and Pr. Seven eccentricities (&=
0.8,04,0.2,0, —0.2, —0.4, —0.8) and various ¢ ranging from oo (pure natural convection)
to 0.01 are considered in the present investigation.

3. NUMERICAL PROCEDURE

3.1. Basic numerical framework

Calculations have been performed with the general non-orthogonal, fully collocated finite
volume approach STREAM [16]. The governing equations and boundary conditions in
Cartesian co-ordinates (X, Y) will now be transformed into computational co-ordinates (&, #)
which express the variation in flow properties in curvilinear co-ordinates. In terms of the
transformed co-ordinates the governing Equations (6)—(9) become

oUu v
52 + o 0, (14)
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where U and V are contravariant velocity components given by

U= Ux,— 1Y, V= —-UY;+ VX, (18)

7]7
J is the Jacobian of the transformation defined by
J=X.Y,—X,Y., (19)

the subscripts ¢ and # denote partial differentiation with respect to their corresponding
directions and the coefficients ¢,;, ¢;, and ¢,, are defined as

g = XiXi; Yi Yé) G1r = X:”Xﬂ; Ys” Yn, Gy = XUX’i; Yn Y’i‘ (20)
The transformed boundary conditions are

U= —cos0, V=sin0, VP=0, ®=1 atyp =0, 21)

U=0, V=0, VP=0, ©=0 aty =1 (22)

3.2. Finite volume approximation

The non-orthogonal, fully collocated scheme used in this study is based on a finite volume
approximation [17,18]. In a non-orthogonal co-ordinate system the transport Equations
(15)—(17) are integrated over the control volume surrounding each interior node of the mesh
shown in Figure 2(a) to yield, after application of the Gauss divergence theorem in conjunction
with central differencing for diffusion, a balance of face fluxes and volume-integrated net
source. The discretized equation can be expressed in the general form

Uc¢e - Uw¢w + Un¢n - Us¢s = [(th) Jql])e + (Fz/z JQI l)w + (th) Jq22)n + (r¢) J%z)s]¢}>
- (F¢ Jq1)epr — (F(/) Jg1)wdw — (F¢ Jq20) 0N
- (F¢ JG23)s s + J(SCD + S¢)» (23)

where I'y and S, represent the diffusivity and additional source pertaining to ¢ respectively
and ¢ stands for U, V, P or ©. JSP is a ‘cross-diffusion’ term given by
1

0
cp_ Y
JSCP = (Re

0 1
& (J%z(/’q)) +% <Re (JQ12¢§)>- (24)
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Figure 2. (a) Co-ordinate transformation; (b) finite volume and storage arrangement

The face values of ¢, i.e. ¢, ¢, etc., are approximated by a first-order upwind scheme. All
the sources, including S” and S,, are discretized via single-point quadrature, i.e. the
volume-averaged source is assumed to be the value residing at the cell-centred node. All cell
corner values involved in the cross-diffusion are evaluated by bilinear interpolation. To
promote numerical stability via diagonal dominance, the sources are represented in the
linearized form

J(SP+S,)=Spdp+ Sc. (25)

where Sp and S¢ represent the implicit and explicit parts of the source term respectively, with
Sp being chosen so that it is unconditionally negative. Substitution of the above expressions
into the volume-integrated equation leads to

Aptpp = > A, b, + Sy, (26)

m=E,W,N,S

where
Ag=T4Jgq1).+{— U, 0), Aw =4 Jqy)y+{—U,,0),
An =T Jq), + { = U,, 0), As=(T,Jg2).+{— U, 0),
Ap=Ag+ Ay + Ax + As — Sp, (27)

in which the symbol { ) denotes the largest of the quantities contained within it. In the above,
face diffusivities are evaluated by linear interpolation using neighbouring nodes on either side
of any face being considered.

The velocity vector is decomposed into Cartesian components and the convective terms are
approximated by van Leer’s MUSCL scheme [19]. All dependent variables such as velocity
components, pressure and temperature are stored together at the centre of a control volume as
shown in Figure 2(b). Such a non-staggered grid arrangement will generally lead to a
chequerboard oscillation when pressure gradients are approximated by central differencing,
reflecting a computational decoupling of velocity and pressure gradient. To remedy this
problem, the method of Rhie and Chow [20] was used. The pressure field is calculated using
the SIMPLE algorithm developed by Patankar [21]. The discretized equations are handled
successively, the coupling between equations through the source terms being solved iteratively.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 323-343 (1998)



BUOYANCY-DRIVEN FLOW IN AN ANNULUS 329

The following convergence criterion based on the residue-value (R,) concept was used:

z
Riy= ) <S¢> - A5, i;) (28)
n=1 m=E,W,P,N,S

Max(R, 4) <1077, (29)
where ¢ represents U, V, P or ® and Z is the number of grid cells.

3.3. Calculation of Nu and Nu

When the convergence criterion is reached, the local and mean Nusselt numbers on the
cylinder wall are calculated. The local Nusselt number on the cylinder wall is defined by

Nui:_<R6®> :_<q®q®> , (30)
6R R=R, \/qll = min
00 (©) (OP
N — <R> _ <qq> _ (1)
OR R=R, \/411 =1 max
The mean Nusselt number is determined from
. 1 2r
Nui =< Nui dOa (32)
27'[ 0
. 1 2n
Nu,=— Nu, do, 49
27 Jo
- ] — —
Nqu(Nui‘i-NUo)‘ G9

4. RESULTS AND DISCUSSION

In the present work, detailed parametric studies are conducted using a two-dimensional model
based on the assumption that the annulus is long enough for axial effects to be neglected.
From the foregoing mathematical formulation it can be seen that the dimensionless parameters
include Re, Ra, ¢ and Pr. In the present study, ranges of values of Re (0—1200), Ra
(7 x 103-107), ¢ (— 0.8 t0 0.8), ¢ (0.01—00) and Pr (0.01-7) at a fixed radius ratio RR = 2.6 are
considered. These values were chosen so as to facilitate comparisons with published experimen-
tal and numerical data. The majority of numerical results presented here are firstly displayed
through streamlines and isotherms. The local and mean heat transfer results are then given by
plots showing the Nusselt number variation with the angular position along the inner and
outer cylinders for discussion of the interaction between fluid flow and heat transfer.

To examine the grid independence, computations of mean Nusselt number in a concentric
rotational annulus with RR = 2.6, Pr= 0.7, Ra = 10° and Re = 1000 are carried out using four
different mesh sizes, namely 41 x 31, 61 x 31, 81 x 41 and 91 x 61. The results are listed in
Table I. It is seen that the maximum difference in mean Nusselt number is approximately 1%,
indicating that the results are insensitive to the grid size. Because of the large gradients
occurring near the inner and outer walls, the node spacing in the radial direction near the walls
is reduced by a factor of two compared with the central region. In the present study a
non-uniform 61 x 31 mesh is used for computing lower-Ra cases and an 81 x 41 mesh for
higher-Ra cases.
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Table I. Effect of grid mesh size on mean Nusselt number Nu of a concentric
rotational annulus (Ra = 10°, Re = 1000, ¢=0, RR=2.6, Pr=0.7)

Grid size 41 x 31 61 x 31 81 x41 91 x 61

Nu 5.526 5.483 5.472 5.466

The validity of the numerical model is tested on the experimental natural convection in a
stationary concentric annulus. In Figure 3 the present results of local Nusselt number
distribution at Ra = 4.7 x 10*, Pr = 0.706 and RR = 2.6 for the inner and outer cylinders show
good agreement with the experimental data of Kuehn and Goldstein [22]. Since there are no
experimental data or theoretical solutions available for the case of a rotating inner cylinder
with eccentric geometry, we compare our results against the numerical solution of Lee [9] to
validate the present model. Figure 4 shows that the mean Nusselt numbers obtained in the
present paper are in good agreement with those obtained by Lee [9].

Figure 5(a) depicts the streamlines and isotherms in a concentric annulus for various
Rayleigh numbers with fixed Re = 1000, RR =2.6 and Pr=0.7. As seen from these contours,
when Ra increases, the basic structures of the flow field and temperature field show the
following features: (i) a rise of the buoyant plume towards the top of the outer cylinder; (i) an
increase in the thickness of the thermal boundary layer along the inner cylinder; (iii) more
distorted contours of streamlines and isotherms in the annulus gap. These features indicate
that a higher Rayleigh number can increase the strength of the recirculation, as proved by the
increasing values of the maximum streamfunction W, and its location moving further
upwards. The isotherms become closer as Ra increases, indicating large temperature gradients
with a higher local heat transfer coefficient. The local Nusselt number (Nu) distribution is
illustrated in Figure 5(b). The variations in Nu become more uniform and monotonic as Ra
decreases. This is because, as Ra decreases, the rotation effect gradually becomes stronger than
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Figure 3. Distribution of Nu for inner and outer cylinders at Rz = 4.7 x 10*, Re =0, ¢ =0 and Pr = 0.706; comparison
with experimental results of Kuehn and Goldstein [22]
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Figure 4. Variation of Nu with Re for various & (Ra=10°, RR=2.6, Pr=0.7); comparison with numerical results of
Lee [9]

the buoyancy effect. When Ra increases, both the maximum local heat flux on the outer
cylinder and the minimum local heat flux on the inner cylinder are increased and moved to the
mid-line (6 =0) in the annulus, demonstrating that the effect of the buoyant convection is
larger than that of the centrifugally forced convection. For example, the point of minimum
heat flux on the inner cylinder is moved to 6 = —39° with Niy; =2.92 and 0 = — 99° with
Nu; =1.77 at Ra="7 x 10° and 7 x 10° respectively.

Figure 6(a) shows the streamlines and isotherms in a stationary eccentric annulus with
Re=0, RR=2.6 and Ra=10° (¢ = o0) at eccentricities e= — 0.8, 0 and 0.8. The streamline
and isotherm contours are symmetric with respect to the mid-line (6 = 0), with one convective
cell on either side of the vertical co-ordinate. The flow and temperature distributions in the
eccentric cases are significantly different from those in the corresponding concentric cases. As
the inner cylinder is moved upwards (¢ > 0), the flow-induced thermal stratification below the
inner cylinder increases, leading to a reduction in flow strength. This is clearly seen from the
Y,,-values given in Figure 6(a). The thermally stratified field for ¢> 0 is clearly evident in
isotherm patterns such as Figure 6(a) (a). However, when the inner cylinder is moved
downwards (¢ < 0), flow-induced thermal stratification in the primary flow area above the inner
cylinder does not occur. This is due to the fact that under negative eccentricity conditions the
fluid has more sufficiently open space above the inner cylinder for convection than under
positive eccentricity conditions. The vortex becomes stronger with increasing ¥,,. Figure 6(b)
shows the distributions of local Nusselt number around the outer and inner cylinders for
various eccentricities. It can be seen from Figure 6(b) that the location of the peak value
always occurs along the mid-line. When ¢= 0.8, owing to insufficient space for buoyancy-in-
duced flow to develop, a two-peak phenomenon can be found in this configuration.

The mean Nusselt number Nu has been plotted against Ra in Figures 7 and 8§ for various
eccentricities with Re =1000, Pr=0.7 and RR=2.6. As Ra increases, the mean Nusselt
number Nu increases considerably because of the stronger convective flow at higher Rayleigh
numbers. At lower Ra ( < 1.4 x 10°), where thermal stratification is not important, negative or
positive ¢ results in an increase in overall heat transfer. At higher Ra (> 7 x 10°), flow-induced
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thermal stratification effects in the lower half of the annulus are promoted. With positive ¢,
thermal stratification in the lower half of the annulus increases, leading to retardation and
reduction of heat transfer. The opposite effect occurs at negative ¢ and causes a stronger
convective flow and greater heat transfer. The buoyancy-driven flow is more vigorous in
negative eccentricities. Another conclusion which can be drawn from Figure 8 is that the
optimal location where minimum mean heat transfer occurs is strongly affected by the
eccentricity. When ¢ increases (inner cylinder moving upwards), the eccentricity causes a
significant reduction in mean heat transfer at higher Ra. However, adverse effects due to

(e)

¥, = 15.623

Figure 5. (a) Streamlines and isotherms at Re = 1000, e=0, RR=2.6, and Pr=0.7: (a) Ra=7 x 10* (¢ =0.1); (b)

Ra=17x10° (¢ =1); (¢) Ra=7 x 10° (¢ = 10); (b) circumferential variation of Nu for various Ra at Re = 1000, ¢ =0,

RR=2.6 and Pr=0.7: Ra=7x10° (¢ =10); Ra=3.5%x10° (6 =5); Ra=1.4x10° (6 =2); Ra=7x 10° (¢ =1);
Ra=17x10* (¢ =0.1)
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eccentricity can be found in lower-Ra cases. This indicates that the pure conduction effect
cannot be neglected in the narrow throat gap. For example, the optimal location occurs at
e=0, —0.8 with Ra=7 x 10°> and 7 x 10° respectively.

Furthermore, in the Ra regime 7 x 10° < Ra < 107, convection effects are evidently impor-
tant for various eccentricities ¢ at Re = 1000, Pr = 0.7 and RR = 2.6. By means of least-squares

regression analysis the present results of mean Nusselt number can be correlated by the
respective expressions

Nu = 0.143 x Ra®>2 x exp(0.66¢> — 0.265), &> 0, (35)
Nu=0.172 x Ra®*? x exp(0.74¢> +0.17¢), ¢<O0. (36)
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These correlations predict mean Nusselt numbers within 12% of the numerically obtained
values.

The effects of rotation of the inner cylinder are studied through the variation of Re. Figure
9(a) shows the streamlines and isotherms in a concentric annulus with fixed Ra = 10° at various
rotational Reynolds numbers. As seen from these contours, when Re increases, the basic
structures of the flow field show the following features: (i) predominant growth of the
right-hand cell; (ii) the number of rings of streamlines appearing around the inner cylinder
increases; (iii) the rise of the thermal plume tends to the descending side; (iv) the thickness of
the thermal boundary layer along the inner cylinder decreases; (v) there are more monotonic
and asymmetric contours in the annulus gap. These features indicate that a higher Reynolds

(a)

¥,, =39.516
(8)
U, = 64.957
()
/ U, = 97.225

Figure 6. (a) Streamlines and isotherms at Ra = 10°, Re =0 (6 = w0), RR=2.6 and Pr=0.7: (a) ¢=0.8; (b) £¢=0; (¢)
¢= —0.8; (b) circumferential variation of Nu for various ¢ at Ra =10, Re=0 (¢ = c0), RR=2.6 and Pr=0.7
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Figure 6 (Continued)

number can reduce the strength of the secondary flow, as evidenced by the decreasing values
of the maximum streamfunction ¥, and the moving of its location to the descending side. The
isotherms become looser, which indicates a smaller temperature gradient. The effects of
rotation on the local Nusselt number Nu are illustrated in Figure 9(b). When Re increases, the
location of maximum local heat flux on the outer cylinder moves to the descending side and
the peak value of the local Nusselt number is reduced. The point of minimum local heat flux
on the inner cylinder, which corresponds to the location of the root of the thermal plume, also
moves in the same way. As Re increases from 0 to 1195, which is equivalent to ¢ decreasing
from oo (pure natural convection) to 0.1, the areas under the local heat flux curves on both
cylinders become smaller. This indicates that the distributions of local heat transfer on the
cylinders become more uniform as Re is increased.
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Figure 7. Effect of Ra on Nu for various ¢ at Re = 1000, RR=2.6 and Pr=0.7

Figures 10 and 11 show the variation in Nu with fixed Ra = 10°, RR =2.6 and Pr = 0.7 for
various eccentricities and Reynolds numbers. In general, the more Re increases, the more the
mean Nusselt number Nu decreases, except at larger positive eccentricities (¢>0.6). This
special phenomenon can be explained as the effect of increasing pure conduction overcoming
the effect of decreasing mixed convection, resulting in heat conduction becoming predominant
in the narrowest throat gap, which is apparent from the isotherm plots. In this paper it is
important to find the optimal location where minimum mean heat transfer occurs. When ¢
increases (inner cylinder moving upwards) from — 0.8 to 0.8, the space of the convective
region is reduced, causing a decrease in Nu. However, adverse effects can be found with
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Figure 8. Effect of ¢ and Ra on Nu at Re = 1000, RR = 2.6, and Pr=0.7: Ra=1.4 x 10% (6 =2); Ra =7 x 10° (¢ = 1);
Ra=14x10° (6=02); Ra=7x 10* (¢ =0.1); Ra=17 x 10* (¢ = 0.01)
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(a)

()

U, =64.957
)

¥, =11.841
(¢)

¥, =3.555

Figure 9. (a) Streamlines and isotherms at Ra = 10°, ¢=0, RR=2.6 and Pr=0.7: (a) Re=0 (6 = 0); (b) Re =378
(6 =1); (¢) Re=1195 (¢ =0.1); (b) circumferential variation of Nu for various Re at Ra=10°, ¢=0, RR = 2.6, and
Pr=0.7: Re=0 (6 =0); Re=119 (6 =10); Re=378 (¢ =1); Re=1195 (¢ =0.1)

stronger rotation at higher positive eccentricities (¢ > 0.6). As noted earlier, this indicates that
the pure conduction effect cannot be neglected in the narrow throat gap. For example, at fixed
Ra = 10° the optimal location for heat transfer occurs at ¢=0 and — 0.7 with Re =0 (¢ = o0)
and Re = 1195 (¢ =0.1) respectively. For fixed Ra = 10°, Pr=0.7 and RR = 2.6 the eccentric-
ity effects are extremely important to heat transfer in the rotational configuration (Re > 0).
The correlations obtained from the numerical results in the present case are

Nu =431 x Re— 97 x exp(0.66¢> — 0.44¢), &> 0, (37)
Nu=6.78 x Re 13 x exp(0.68¢% + 0.31¢), ¢<0. (38)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 323-343 (1998)
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These correlations predict mean Nusselt numbers within 11% of the correlated data.

Figure 12 displays the streamlines and isotherms for the concentric cases in which Ra = 105,
Re =1000 and RR = 2.6 with Prandtl numbers Pr=0.1, 0.7 and 7. It shows clearly that the
strength of the mixed convection increases as the Prandtl number increases, owing to the
smaller mixed rotation parameter ¢ ( = Ra/PrRe?) for higher-Prandtl-number fluids. Hence the
locations of W, and the thermal plume are moved to the descending side. Comparison of the
isotherms indicates there exists a thinner thermal boundary layer along both surfaces in
higher-Prandtl-number cases, owing to the effect that the thermal boundary layer is more
confined around the inner and outer cylinders. Hence the temperature gradients along the
inner and outer cylinders increase as the Prandtl number increases. Figure 13 shows the effect
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Figure 9 (Continued)
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Figure 10. Effect of Re on ‘Nu for various ¢ at Ra = 10>, RR=2.6 and Pr=0.7

of the eccentricity ¢ on Nu for various Prandtl numbers with Ra = 10%, Re = 1000 and
RR =2.6. It is observed from Figure 13 that the effect of changes in ¢ on the mean Nusselt
number Nu is more pronounced for Pr = 7. Under this circumstance the mean Nusselt number
Nu first decreases and then increases with increasing eccentricity. However, this trend is rather
insensitive to changes in ¢ for the smaller Prandtl numbers Pr=0.01, 0.1 and 0.7.
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Figure 12. Streamlines and isotherms at Ra = 10°, Re = 1000, ¢=0 and RR =2.6: (a) Pr=0.1 (¢ = 10); (b) Pr=
(6=1.43); (¢c) Pr=17 (6 =0.143)

5. CONCLUDING REMARKS

A numerical simulation has been performed for the problem of mixed convection in an
annulus between two eccentric horizontal cylinders with a heated rotating inner cylinder. The
governing equations in the computational domain were solved numerically by a finite volume
formulation using the non-orthogonal, fully collocated code STREAM. The convection is
represented by the MUSCL scheme and solutions are iterated to convergence through pressure
correction. The numerical procedure adopted in this study can easily eliminate the ‘numerical
leakage’ phenomenon encountered in the mixed convection problem in a highly eccentric
annulus. The numerical solutions are in good agreement with published results. The following
conclusions can be drawn from the present study.
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Figure 13. Effect of ¢ and Pr on ‘Nu at Ra= 10%, Re = 1000 and RR=2.6

. For fixed Re and Pr, thermal stratification is not important: negative or positive ¢ causes

an increase in overall heat transfer at lower ¢ (<0.2). With a larger mixed rotation
parameter ¢ (> 1), flow-induced thermal stratification effects in the lower half of the
annulus are promoted. With positive ¢, thermal stratification in the lower half increases,
leading to retardation and reduction of heat transfer. The opposite effect occurs at negative
&, causing a stronger convective flow and greater heat transfer.

. For all configurations, the larger the mixed rotation parameter ¢ is, the greater the

maximum streamfunctions ¥,, becomes. When ¢ decreases in the concentric annulus, the
locations of the thermal plume and the maximum streamfunction ¥,, are moved to the
descending side, corresponding to the maximum and minimum values of local Nusselt
number around the outer and inner cylinders respectively.

. For fixed o (mixed rotation parameter), when the eccentricity ¢ increases, i.e. the inner

cylinder moves upwards along the mid-line (6 = 0), the value of the maximum streamfunc-
tion W, decreases and the location of the thermal plume moves to the descending side,
except for ¢ = oo (pure natural convection).

. The mean Nusselt number Nu is significantly affected by the eccentricity ¢, especially for

small ¢ at large eccentricities. When ¢ increases, the mean Nusselt number Nu first
decreases and then increases.

. The optimal location where minimum heat transfer occurs is affected by ¢ and ¢ When o

increases, the optimal location shifts upwards in the annulus, while for small ¢ the optimal
location occurs at the middle of the annulus.

APPENDIX A. NOMENCLATURE

distance between axes of inner and outer cylinders of eccentric annulus
gravitational acceleration

Jacobian of co-ordinate transformation

characteristic length
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no normal vector on wall

Nu, Nu local and mean Nusselt numbers

o, O centres of outer and inner cylinders

p, P dimensional and dimensionless pressures
Pr Prandtl number

r radial co-ordinate

Ra Rayleigh number

Re Reynolds number of inner cylinder

RR radius ratio (= R,/R))

R, R, inner and outer cylinder radii

R, mass imbalance

R, residue value

Sc explicit part of source term

Sp implicit part of source term

Sy source term pertaining to scalar variable ¢
N source term pertaining to cross-diffusion
T, T, temperatures of inner and outer cylinders
T, reference temperature

U dimensional and dimensionless velocities in X-direction

vV contravariant velocities

V dimensional and dimensionless velocities in Y-direction

X dimensional and dimensionless co-ordinates in horizontal direction

Y dimensional and dimensionless co-ordinates in vertical direction
number of grid cells

Greek letters

thermal diffusivity

underrelaxation factor for pressure P’
coefficient of volumetric expansion
eccentricity

azimuthal angle measured from positive Y-axis
dimensionless temperature

dynamic viscosity

kinematic viscosity

dimensionless transformed co-ordinates
density

mixed rotation parameters ( = Ra/PrRe?)
scalar property

streamfunction

rotating speed of inner cylinder

EHESAIDMETR @D R R
=

Superscripts

) time averaging
) correction or perturbation
)* provisional field

’

~ N A~
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Subscripts

e, W, n,s east, west, north and south faces of control volume
P, E, W, N, S centre of control volume and surrounding nodes in east, west, north and

10.
1.
12.
13.
14.

15.

18.
19.
20.

21.
. T.H. Kuehn and R.J. Goldstein, ‘An experimental study of natural convection heat transfer in concentric and

south directions
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